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Kinetic Data StructuresA State of the Art ReportLeonidas J. Guibas, Stanford University, Stanford, CA 94305e-mail: guibas@cs.stanford.eduSuppose we are simulating a collection of continu-ously moving bodies, rigid or deformable, whose in-stantaneous motion follows known laws. As the sim-ulation proceeds, we are interested in maintaining cer-tain quantities of interest (for example, the separationof the closest pair of objects), or detecting certain dis-crete events (for example, collisions) which may, inturn, alter the motion laws of the objects. In thispaper we present a general framework for addressingsuch problems and the tools for designing and analyzingrelevant algorithms, which we call kinetic data struc-tures. We discuss kinetic data structures for a va-riety of fundamental geometric problems, such as themaintenance of convex hulls, Voronoi and Delaunaydiagrams, closest pairs, and intersection and visibil-ity problems. We also briey address the issues thatarise in implementing such structures robustly and ef-�ciently. The resulting techniques satisfy three desir-able properties: (1) they exploit the continuity of themotion of the objects to gain e�ciency, (2) the num-ber of events processed by the algorithms is close to theminimum necessary in the worst case, and (3) any ob-ject may change its `ight plan' at any moment with alow cost update to the simulation data structures. Forcomputer applications dealing with motion in the phys-ical world, kinetic data structures lead to simulationperformance unattainable by other means. In addition,they raise fundamentally new combinatorial and algo-rithmic questions whose study may prove fruitful forother disciplines as well.1 IntroductionMotion is ubiquitous in the world around us. Com-puter disciplines, such as computer graphics, robotics,and vision, that deal with modeling the physical worldmust in particular deal with the modeling of motion.

This may involve estimating motion parameters fromsensor data, local and global motion planning and con-trol, collision checking, physics-based simulation, char-acter animation, rendering, etc. Unlike the modelingof shape, which has been well studied in the above dis-ciplines over the past three decades, the analysis andmodeling of motion in a cohesive fashion is still in itsinfancy. A key di�culty is that in modeling motion werarely have all the motion data available at once. Mo-tion takes place over the time dimension, and the mo-tion parameters of a system of moving objects, whetherreal or virtual, can change drastically because of eventsand interactions between the objects that are hard topredict far into the future. Useful motion models mustincorporate this basic on-line character of the problem.In the work presented here, we will be interested inthe simulation of a complex system of multiple mov-ing objects and the e�cient maintenance of variousattributes of this system as the motion evolves. Forexample, we may be interested in maintaining (the sep-aration of) the closest pair of objects, because we wantto detect collisions between them. We may want tomaintain a binary space partition (BSP) of the spacecontaining the objects, in order to quickly obtain vis-ibility information for rendering. Or we may want tomaintain a minimum spanning tree (MST) connectingthe moving objects, as a way of linking them through awireless communications network. Closest pairs, BSPs,and MSTs are all concepts whose fundamental impor-tance is well-known to Computational Geometry, andon which extensive research has been done. The nov-elty in our setting is that the de�ning objects are notstatic but in continuous motion. We mean `continuous'both in the sense of non-stop, as well as in the math-ematical sense | objects do not jump from one partof space to another. We propose to study a new classof algorithmic techniques, which we call kinetic datastructures (or KDSs for short), that exploit this conti-
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L. Guibasnuity or coherence of the motion for maintaining thesegeometric structures of interest more e�ciently thanany known alternatives. We will refer to the attributebeing maintained as the con�guration function of thesystem (or CF for short). Note that each of the aboveCFs has a combinatorial description (e.g., the graphstructure of the MST) that changes only at discretetimes, when certain events occur (but the separationof the closest pair, or the total cost of the MST arethemselves continuous functions of time).Now, in principle, the continuous motion of each ob-ject can be approximated, after a discrete sampling oftime, by deleting and reinserting it in a new position ateach time step. But this incremental updating method,which is widely used in practice, bene�ts from conti-nuity only indirectly and can be used only when thenumber of moving objects is small, because of its in-herent ine�ciency. In particular, the trouble with any�xed-rate sampling of the evolving system is that iteither oversamples the system (wasting resources), orundersamples it (possibly missing critical periods) |since the events of interest to the con�guration func-tion typically occur in highly irregular patterns overtime. The aim of our new technique is to take advan-tage of the coherence present in continuous motionsso as to process a minimal number of combinatorialevents, yet still maintain the CF correctly. In thisrespect, the way of analyzing our data structures isrelated to the dynamic computational geometry frame-work introduced by Atallah [10] in order to study thenumber of combinatorially distinct con�gurations of agiven kind (e.g., convex hull or closest pair) that ariseduring known simple motions of the geometric objects.However, unlike Atallah's setting in which motions arepredetermined, our data structures do not require us toknow the full motion of the objects in advance. Thusthey are much better suited to real-world situations inwhich objects can change their motion on-line becauseof interactions with each other, external impulses, etc.Though our emphasis will be on exploiting the con-tinuous motion of the present objects, we must alsodeal with new objects entering and old objects exit-ing the simulation. Such discrete changes can be han-dled by using dynamic data structures which are well-developed in Computational Geometry | these mustthen be combined with our kinetic structures. Theneed for handling discrete changes arises as well incomposing kinetic data structures with each other. For

example, a kinetic client of a kinetic convex hull algo-rithm for moving points will see a combinatorial changeto the convex hull as a discrete update (a new point en-ters the hull, or an old point leaves).The remaining subsections of the paper are as fol-lows. Section 2 introduces the key idea on which ourdevelopment of good KDSs is based: that of animatingproofs through time. The motion model and qualitiesof good KDSs are discussed in sections 3 and 4 respec-tively. The following four sections survey the currentlyknown results and discuss several ideas towards the fu-ture development of KDSs for important con�gurationfunctions in geometry, including classical problems inarrangements, intersections, visibility, etc., all not yetstudied in the kinetic setting. Section 9 returns to thedynamic computational geometry framework and dis-cusses new approaches for bounds on CF combinatorialchanges under various probabilistic models. Section 10discusses the issues that arise in implementing e�cientschedulers for the event queues that arise in kineticsimulations and Section 11 explores various additionaltopics related to the practical implementation of KDSs.Finally Section 12 concludes by discussing the theoret-ical and applied signi�cance of this work.Although the work presented here is focussed primar-ily on rigid motions in a geometric context, it is worthremarking the the ideas of kinetic data structures ex-tend to any context in which a continuous attributeevolves through a sequence of discrete events. Thusthe conceptual framework we will develop is equallyapplicable to problems involving deforming objects, oreven to completely non-geometric problems, such asthe maintenance of shortest paths in a graph with con-tinuously varying edge costs.2 Animating Proofs Through TimeWe will maintain a con�guration function by perform-ing an event-driven simulation of the motion. Suchmethods are based on an event queue which storesevents, each with an associated event time. The simu-lation always proceeds to the next event in the queue;the event is removed from the queue and processed.This in turn may cause additional events to be sched-uled or old events to be descheduled. And then thiscycle is repeated all over | a situation not unlike thatof sweep algorithms in Computational Geometry.



www.manaraa.com

Kinetic Data StructuresThe critical events for us are those that change thecombinatorial description of the con�guration function.For example, if we are maintaining the closest pair ofn moving points in the plane, the instant when thecurrent closest pairAB is replaced by CD as the closestpair, constitutes an event that we must know about andhave scheduled in the priority queue. Since discoveringand scheduling these events is not easy, we will often�nd it advantageous to consider a somewhat larger setof events that is easier to maintain. We call the eventswhich change the con�guration function external, inorder to distinguish them from the remaining events weprocess, which we call internal. Any correct method formaintaining the CF must process all external events;the internal ones are there for the convenience of theparticular kinetic data structure we are developing.How are we to �nd a superset of the set of the exter-nal events that is not too large and at the same timeis easy to maintain? The key insight of our approachis that we can do so by maintaining through time anevolving proof of correctness of the value of the con�g-uration function of interest. Such a proof will consist ofa number of elementary conditions on the moving data,which we call certi�cates, that altogether imply (prove)the correctness of the current value of the CF1. Eachcerti�cate has an earliest failure time, and this failureis scheduled as an event in the event queue. Clearly, aslong as no certi�cate fails, the combinatorial descrip-tion of the CF cannot change. When a certi�cate fails,it is the job of the kinetic data structure to repair andupdate this proof. It may be that the CF has notchanged (AB is still the closest pair), but the proofneeds to be updated (internal event). Or it may bethat both the CF and its proof need to change at suchan event (external event).Since the motion of the objects is continuous, it willbe possible to repair a single certi�cate failure in awell-chosen proof with a relatively modest cost. If thisfailure is an external event, then the proof will guideus on how to update the con�guration function as well.Finding proofs (i.e., certi�cate sets) that evolve grace-fully in time as certi�cate failures happen is exactly theart of designing good kinetic data structures. Given acon�guration function, we can generate a �rst cut at aproof as follows. Conceptually speaking, we stop the1In this paper we will often use the word `proof' to referto such a certi�cate set.

motion, run our favorite static algorithm for comput-ing the value of the CF, and then collect all the teststhe algorithm performed together with their outcomes.If this static algorithm is correct, then the outcomesof all these tests is a set of certi�cates that proves thecorrectness of the value of the CF. Most proofs gener-ated this way will not animate well, or they will requireconsiderable massaging before they yield good kineticstructures. We will present several examples of thisprocess in later sections of this paper.Since certi�cates will generally correspond to testsperformed by a static algorithm for the CF, they invari-ably involve only a small and constant number of themoving objects. For reasons that will become clearerin Sections 3 and 4, throughout this work we will aimto only use certi�cates that involve a constant numberof objects each, as well as to minimize the number ofcerti�cates that any one moving object is involved in.To summarize then, a kinetic data structure main-tains a CF by updating over time a proof of correct-ness of the CF. We saw earlier the di�culties with anyscheme for maintaining the CF by doing a �xed-ratesampling of the evolving system. By using the idea of`proof animation' we are able to do a more intelligent,uneven sampling that is better adapted to the CF, soas to avoid wasteful computation when the CF doesnot change, while doing the necessary update at theexact times when it does.3 Motion ModelsWhat information about the moving objects does a ki-netic data structure need in order to do its work? Theinterface happens in the calculation of the certi�catefailure times. In the simplest setting, each moving ob-ject follows a publicly posted ight plan specifying itsshort-term motion. If we look at the evolving systemover a period of time when these ight plans or mo-tion laws do not change, then we can calculate for eachcurrently valid certi�cate its failure time. In a typi-cal case, the ight plans will be polynomial or rationaltrajectories, and the certi�cate itself will be a simplealgebraic inequality, so the certi�cate failure time willbe the next largest real root of some low-degree poly-nomial.Of course the ight plan of an object can change.A ight plan update can occur because of interactions



www.manaraa.com

L. Guibasbetween the object and other moving objects, the en-vironment, etc. For example, a collision between twomoving objects will in general result in updates to theight plans of both objects. But an object can alsochange its motion law because of its own free will. Inorder for the simulation to proceed correctly, whenevera ight plan update happens, the KDS must be in-formed about it. Events that change the ight plansof objects (e.g., collisions) must themselves be sched-uled in the event queue before they happen. Thus aKDS for the MST of a set of moving and elasticallybouncing balls may need to also implement a closestpair/collision detection KDS as a way to know all theight plan updates. Or, as we already remarked, whencomposing KDSs, events that change the output of the�rst structure can generate ight plan updates for theother.When a ight plan update for an object happens,all the certi�cates that involve that object must havetheir failure times recalculated and their positions inthe event queue updated. This makes it desirable tokeep the number of certi�cates involving any particularobject small.Although the simple motion model presented so farmay be adequate for certain idealized virtual realitysimulations, it is clearly insu�cient when tracking mov-ing objects in the real world. It can then be the casethat the ight plans only give us partial informationabout the object motions, or that there are no postedight plans at all. Instead the KDS has to try to pre-dict the current motion of each object by extrapolatingfrom its past motion. With this incomplete knowledge,the KDS clearly cannot calculate exact failure timesfor certi�cates. The best it can do is to calculate foreach certi�cate a `last time' till which the KDS canbe sure that the certi�cate is still valid, given the par-tial ight plans and perhaps some a priori bounds onthe velocity and other motion parameters of each ob-ject. Events can be scheduled for those times and thecerti�cate then be re-examined using any updated po-sition/motion information that may have become avail-able in the meantime.In the real-world context, this raises the issue of hav-ing the kinetic algorithm use sensing so as to acquirebetter motion information about the objects in orderto resolve the status of certi�cates. This then becomesakin to the model of `data in motion' introduced by Ka-

han [33]. What is the best way for a kinetic algorithmto use sensing in order to proceed with the simulation?This raises several research issues that have not beenadequately explored yet.Several other motion models incorporating uncer-tainty and limiting the ability of the KDS to examinethe evolving system are worth discussing, but in ordernot to delay further the presentation of concrete prob-lems, we will omit this topic. In the remaining sectionswe will assume that we have posted ight plans withfull motion information and that all ight plan updatesare events scheduled by our KDS or others in the eventqueue. We will also assume that each motion plan has�xed complexity independent of the number of mov-ing objects2; this implies that the cost of calculating acerti�cate failure time is O(1).4 Analysis of Kinetic Data StructuresSo far we have concentrated on the issue of correctnessfor a kinetic data structure. The challenges were hownot to miss any external events a�ecting the CF, andhow to stay informed of all the ight plan updates. Buthow shall we evaluate kinetic structures? Storage andtime are clearly important, but the on-line nature ofthe events raises some additional issues akin to thoseof on-line algorithms. Criteria for measuring the per-formance of kinetic data structures is the topic of thisSection.Though the exact nature of the ight plans is notrelevant to correctness issues, it clearly a�ects per-formance. When analyzing kinetic structures we willgenerally assume that all trajectories followed by themoving objects are pseudo-algebraic splines. By thiswe mean that each trajectory consists of a discreteset of arcs, and the transitions between the arcs cor-respond to ight plan updates. The arcs themselvesmust be what we call pseudo-algebraic with respect tothe KDS. By this we mean that all certi�cates usedby the KDS can switch from true to false at mosta bounded number of times, for any motions follow-ing the given arcs. This is a condition akin to theDavenport-Schinzel condition [41] commonly used to2This assumption excludes certain kinds of simulations,such as classical n-body simulations [29], from our simplestframework.
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Kinetic Data Structureslimit the complexity of curve interactions in Compu-tational Geometry. In particular, algebraic arcs ofbounded degree are always pseudo-algebraic. On oc-casion, we will make much stronger assumptions, suchas in the usual scenario of linear, constant velocity, mo-tions.The performance bounds we give depend on n, thenumber of rigidly moving objects or object parts.Clearly the number of ight plan updates also a�ectsthe complexity of the simulation. Exactly how to incor-porate that into our framework is a topic for further re-search. For the KDS analyses in the following sectionswe will assume that there are no ight plan updates,except in speci�c situations where we are composingkinetic structures. We will call a quantity `small' if itis of the order of O(polylog(n)), or even O(n�) for somearbitrarily small � > 0.We propose four major criteria for evaluating thesestructures.responsiveness Most obviously, a KDS is good if thecost of processing a certi�cate failure is small. Theresponsiveness of a KDS is the worst-case amountof time needed to update its proof after a certi�-cate failure. This may require discovering if thevalue of the CF has changed and what the newvalue is, as well as updating the certi�cate set byremoving old certi�cates that are no longer partof the proof, and adding new certi�cates that arepart of the new proof. All these certi�cate changesneed to be reected in the event queue as well. Wecall a KDS responsive if the the worst-case amountof time needed for such a proof update is small (inthe technical sense just de�ned).e�ciency A second key performance measure for aKDS is the worst-case number number of eventsprocessed. Our aim will be to develop kineticdata structures for which the total number ofevents processed by the structure in the worstcase is asymptotically of the same order as, oronly slightly larger than, the number of externalevents in the worst case (technically, we requirethat the ratio of total events to external events issmall). This is reasonable, as the number of ex-ternal events is a lower bound on the cost of anyalgorithm for maintaining the desired con�gura-tion function. A KDS meeting this condition willbe called e�cient.

Note that in this de�nition we are comparingevents over two di�erent motions: the ones max-imizing the number of events processed by theKDS, and the ones maximizing the number of ex-ternal events. In a more re�ned setting, we callthis measure weak e�ciency. A weakly e�cientKDS only guarantees that it never processes manymore events than the worst-case number of ex-ternal events over all allowed motions. We de-�ne strong e�ciency to mean that the worst-caseratio of total events processed to external events(taken over all allowed motions) is small | thisis akin to the competitive ratio of on-line algo-rithms [21] and is perhaps a more satisfactory no-tion of e�ciency. Unfortunately so far we havefound only few strongly e�cient KDSs, and thoseunder highly restrictive motion assumptions. Weneed to expand our repertory of strongly e�cientstructures.locality We already remarked a number of times thatit is important to keep low the maximum numberof certi�cates in which any one object appears, inorder to allow e�cient ight plan updates. Thelocality of a KDS is the maximum number of cer-ti�cates in which any one object can ever appear.If that number is small we call the KDS local. Theexistence of local KDSs is an intriguing questionfor several CFs.compactness The size of the KDS is the maximumnumber of certi�cates ever present in a proof | italso reects the size of the event queue that needsto be maintained. We call a KDS compact if themaximum number of certi�cates ever present ina proof is of the order of n times a small (in thetechnical sense) quantity (i.e., if it is nearly linear).Note that locality implies compactness, but respon-siveness and e�ciency are unrelated. There exist e�-cient but unresponsive structures, as well as ine�cientbut responsive ones3.3In our early work on KDSs we have focussed on prob-lems for which compact and local KDSs exist, as the nextfew sections show. We expect that the development ofKDSs for problems where the minimum proof size is super-linear to be considerably more challenging and to requirerevisions in our locality desiderata.
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L. Guibas5 An Example KDSTo make the issues above more concrete, and since wedo not have the space to present in detail kinetic solu-tions to the more substantial problems discussed in thesequel, let us consider the following simple 1-d situa-tion. Given a set of points moving continuously alongthe y-axis, we are interested in knowing at all timeswhich is the topmost point (the largest, if we think ofthe points as numbers). If two points meet, we allowthem to pass each other without interaction. Supposefurther that we know that the points are moving withconstant velocities (but possibly a di�erent one each),starting from an arbitrary initial con�guration.If we draw the trajectories of the points in the ty-plane (where the t axis is horizontal and denotes time),then our problem is nothing but computing the upperenvelope of a set of straight lines in the plane (or atleast the part of it that is after the initial time t0).This upper envelope computation can be trivially donein O(n logn) time with a divide-and-conquer algorithm(this bound holds even if points can appear and disap-pear at arbitrary times, but then it is not trivial [32]).In the worst case, the number of times during the mo-tion that the topmost point changes is �(n). Thus wehave a method for computing the con�guration func-tion of interest in time that is is only a logarithmicfactor higher than the maximum number of changes inthe con�guration function itself.For our purposes, however, this solution is unsatis-factory, because it is based on knowing in advance thefull motions of the points: a ight plan update willforce a recomputation from scratch of all future max-ima. In [12] we show that various other simple solutionsalso su�er from drawbacks as kinetic structures. Main-taining a sorted list of the points is easy and yields astructure which is responsive, local, and compact, butunfortunately not e�cient. Maintaining a heap is onlyslightly more complicated, and this yields a responsive,e�cient, local, and compact structure. But in this casethe proof of e�ciency is not easy [13], and to have sucha simple KDS be so hard to analyze is discouraging.Let us also consider the following fourth solution tothe kinetic maximum maintenance problem, which wecall a kinetic tournament. The idea is to use a simpledivide-and-conquer strategy. The algorithm partitionsthe points into two approximately equal-sized groups(arbitrarily), and recursively maintains the maximum

of each group. A �nal comparison at the top levelyields the global winner. This tournament structuregenerates �(n) certi�cates, each asserting an inequalitybetween the leaders of two subtournaments. When oneof these comparisons changes, the new winner has tobe propagated up the tournament tree to its properlevel. Clearly the update cost is O(logn), and localityis O(logn) as well.If our points move with constant velocities, howmany events will our kinetic tournament have to pro-cess? The key insight to answering this question is torealize that the kinetic tournament is implementing adivide-and-conquer algorithm for the computation ofthe upper envelope of n straight lines in the ty-plane(the point trajectories). For example, the comparisonsperformed over time at the top level for declaring the �-nal winner are exactly those needed to merge the upperenvelopes of the two subgroups of the lines. The overallcost of the merge is easily seen to be O(n) and it fol-lows that this upper envelope computation has a worstcase cost satisfying of C(n) = O(n logn). The num-ber of kinetic tournament events (re-schedulings, etc.)is proportional to the number of times the identity ofone of the contestants at a node of the tournamenttree changes. Each such identity change correspondsto an intersection in one of the sub-envelopes com-puted by the divide-and-conquer algorithm, and henceis counted by the O(n logn) bound on C(n). There-fore the kinetic tournament accomplishes our goal ofmaintaining on-line the maximum of a set of movingpoints, and it is a responsive, e�cient, compact, andlocal KDS.This maximum problem is one of the rare ones forwhich we know of a strongly e�cient KDS, but in aspecial case only. We present this as our �fth and �-nal solution. If point yi is moving as ti(t) = �it + �i,then let us map it to the static vector (�i; �i) in theparameter plane with axes � and �. Clearly the maxi-mum yi at time t is the vector among these whose dotproduct with (t; 1) is maximum. Thus it is enough toprecompute the convex hull of the points in the (�; �)-plane corresponding to the tips of these vectors, andthen simply track the extremum around the convex hullwith a rotating tangent whose slope is (�1; t). The costof detecting each maximum change is constant. Thisstructure is kinetic, because if ight plan update hap-pens, it can be accommodated by updating the convexafter deleting the vector corresponding to the old mo-
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Kinetic Data Structurestion parameters and inserting the vector correspondingto the new ones. Such updates to the convex hull canbe handled e�ciently, in time O(log2 n) [38].6 Extent ProblemsThe �rst class of kinetic problems we will investigatedeals with the extent of a set of moving objects. Byextent we mean various representations of how spreadout the objects are in space. We include under extentclassical geometric con�guration functions such as theconvex hull, diameter, width, various types of boundingboxes, minimum enclosing sphere, etc. In the contextof moving bodies these con�gurations are important forknowing if the objects have entered any forbidden re-gions (e.g., aircraft ying in forbidden airspace), clip-ping (e.g, speeding up rendering by ignoring objectsoutside the view port), detecting various exceptionalconditions (e.g., some object gets so far away that it isout of communication range), etc.Convex hulls and upper envelopesWe have developed a responsive, e�cient (in theweak sense), local, and compact algorithm for pointsmoving in the plane with algebraic trajectories ofbounded degree [12]. Our algorithm works in a divide-and-conquer fashion, like the kinetic tournament ofSection 5. It is actually easier to explain the algorithmin the dual setting, where the problem of maintainingthe upper convex hull of n moving points in the planedualizes to the problem of maintaining the upper en-velope of n moving lines. Again, we partition the linesinto two roughly equal groups which we call red andblue, and then recursively maintain the upper envelopeof each group. The goal of the root node of the recur-sion is to maintain the purple upper envelope of all thelines, given the recursive maintenance of the red andblue envelopes. A certi�cate structure for this problemcan be derived by considering how we can merge thered and blue envelopes into the purple envelope in astatic setting. This can be done by a standard sweep-line algorithm and requires two types of tests: x-testsin order to decide the x-ordering of vertices of the redand blue envelopes, and y-tests that compare whethera red or blue vertex is above or below its blue or redcontender edge (see [12] for details). Altogether thesex- and y-certi�cates, from all levels of the recursion,form a proof of correctness of the current convex hull.

Unfortunately this set of certi�cates is not local: asmany as 
(n) blue vertices might be above the samered contender edge (or vice versa). If that red edge un-dergoes a ight plan update, a large number of certi�-cates will need to have their failure times recomputed.In [12] we show how to modify this certi�cate set andmake it local by adding an additional type of test, aslope or s-certi�cate between pairs of lines. It is thenquite straightforward to check that when one of thesex-, y-, or s-certi�cate fails at a node of the recursiontree, it is possible to update the local upper envelopeand corresponding certi�cate set in O(1) time, and thesame holds for all higher levels of the tree to whichthis change needs to be propagated. From these con-siderations it easily follows that the structure is local,compact, and responsive. Figure 1 shows a simple ex-ample of this process. How about e�ciency? Even withstraight lines motions, we can show that the convex hullcan change combinatorially 
(n2) times [5]. Because ofour algebraic trajectory assumption, it is clear that thenumber of events corresponding to s-certi�cate failuresis O(n2), but the corresponding counts for y- and x-certi�cates areO(n3) andO(n4) respectively. However,by considering the surfaces swept by the lines over timeand invoking recent theorems of Combinatorial Geom-etry about the complexity of upper envelopes [31], aswell as the overlay of envelopes [8], we can prove a near-quadratic bound on the number of the y- and x-eventsas well. Thus the algorithm is e�cient (O(n2+�) eventsin the worst-case), but the proof of this fact requiressubstantial machinery.
x x x x x xy y y y ss s syFigure 1: A set of consecutive kinetic events.E�cient kinetic data structures for convex hulls andlower envelopes in higher dimensions d > 2 are notyet fully developed. We expect this to pose challenges,even for d = 3. To apply the divide-and-conquer strat-egy presented above to 3-d upper envelopes of mov-ing planes we will have to maintain in the xy-planethe overlay of subdivisions corresponding to the pro-jections of the red and blue upper subenvelopes. In
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L. GuibasSection 8 we will see how to maintain a planar sub-division induced by moving segments in the plane inthe context of binary space partitions (BSPs). How-ever, those ideas might not work as well in the currentcontext, as the moving elements of the subdivision arethemselves derived moving objects (e.g., the projec-tions of lines that are the intersections of the primarymoving planes). Also, the overlay subdivision can have�(n2) complexity, even though each of the blue, red,and purple subdivisions has of course linear complex-ity. Thus we must �nd a way to maintain (the rele-vant parts of) the overlay subdivision implicitly, unlesswe are willing to consider non-compact structures with�(n2) certi�cates. In addition, the trick we used toensure locality for y-certi�cates in 2-d extends in the3-d case only in part, unfortunately. It does not workwhen we assert that a convex envelope lies below a tri-angle | in this case all the rim vertices of the envelopeseem to require independent z-certi�cates. Thus bothsublinear locality and compactness remain open issues.We expect progress on these fundamental structuresto enable progress on other higher-dimensional kineticproblems as well.Diameter, width, minimum spanning circle, etc.Once we can maintain the convex hull of movingpoints in 2-d, we can also solve a number of other re-lated extent problems. In [5] we show how to maintainthe diameter, width, and various avors of boundingboxes (minimum area, minimum perimeter) with thesame overall kinetic performance as the convex hull.These applications show the power of composing ki-netic data structures: once we have the convex hull wecan maintain antipodal pairs of vertices of the convexhull and compare their distances or separation using akinetic tournament. We also show that these kineticalgorithms are e�cient, as each of the respective con-�guration functions can undergo 
(n2) changes evenfor points moving linearly in the plane. It will be quiteinteresting to consider the same problems in higher di-mensions, either based on convex hull techniques, or byother more direct methods, as was done for diameterand width in the static case [18]. The kinetic mainte-nance of collections of bounding boxes, such as thoseused in OBB-trees [28] is also very interesting.Not all 2-d extent problems can be solved this eas-ily. Consider the problem of maintaining the min-imum spanning circle (MSC) of a set of n moving

points in the plane. It is possible to prove in vari-ous ways that the maximum number of times the MSCcan change combinatorially is nearly cubic (under thepseudo-algebraicity assumption), but we do not knowif this bound is tight. In a space-time diagram theMSC provides a certain kind of envelope of the pointtrajectories. This makes us hope that some of the ver-tex charging schemes for lower envelopes, that wererecently so successfully used to bound the complex-ity of lower envelopes of algebraic surfaces [40], mightbe applicable to this case as well. The key will be to�nd a way to relate vertices on the envelope (i.e., timeinstances when the MSC is de�ned by four cocircu-lar points) to vertices inside the envelope, but not toodeeply.In terms of a kinetic data structure for the MSC,we can use the observation that the MSC is the small-est circumcircle of any of the triangles in the furthestpoint Delaunay triangulation of the point set (which isalways a triangulation of the convex hull). If we canmaintain the convex hull and the furthest point Delau-nay triangulation of the point set, then we can derivean elegant kinetic structure for the MSC as follows.X
Y

ZA BCD
Figure 2: Maintaining the MSC.Consider the dual tree of the furthest point Delau-nay triangulation, and root it at the triangle whosecircumcircle is the MSC. To be concrete, let this trian-gle be XY Z, and let the three other triangles that arethe children of the root have as their third vertex thepoints A, B, and C respectively. We claim that as longas the convex hull and the Delaunay triangulation donot change, the MSC also cannot change. The only wayfor the MSC to change combinatorially is to have one ofthe points A, B, or C exit the current MSC, and this isa Delaunay event. A point such as D in the �gure can-not escape from the MSC without �rst escaping from
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Kinetic Data Structuresthe circumcircle of the Delaunay triangle AXY | andthis will also change the Delaunay triangulation. Thisobservation creates a tree of InCircle Delaunay certi�-cates of linear size, which together with the certi�catesneeded for the convex hull, proves the correctness ofthe MSC. When one of the certi�cates fails, this MSCproof tree can be updated by simple tree rotations. Un-fortunately, we do not know if this KDS is e�cient. Anear-cubic upper bound on the number of total eventsprocessed can be proved | the dominant term is thenumber of Delaunay triangulation changes, for whichonly an upper bound of the form O(n2�s(n)) is known(see below).Range searchingIt is worth noticing that the diameter, width, MSC,etc. are all extent measures de�ned by a small and �xednumber of the moving points. This is also the casefor the canonical pieces used in various range search-ing geometric structures, including Willard partitiontrees [24], conjugation trees [24], and many of the newerstructures for simplex range searching based on cut-tings and shallow cuttings [36]. The e�cient mainte-nance of range searching structures under continuousmotion of the objects de�ning them is another areathat needs to be developed.7 Proximity and Intersection ProblemsProximity and intersection are fundamental modalitiesin describing events that a�ect the evolution of a sys-tem of objects in motion. Collisions between objects,i.e. transitions from non-intersection to intersection, in-variably a�ect the ight plans of the objects involved.Proximity to other objects will often cause a movingobject to change its ight in order to get closer or fur-ther away from one of the moving objects, and so on.For complex objects it is often advantageous to approx-imate them with simpler bounding volumes and thencheck for intersection between these bounding volumes�rst. Thus we may want to track which pairs of bound-ing volumes of objects intersect, as such pairs may needto be checked for collision by a more re�ned algorithm.In this section we present some preliminary results andresearch plans for problems in this area.Voronoi diagrams and Delaunay triangulationsThe central role of Voronoi diagrams and Delaunaytriangulations is well-established in Computational Ge-

ometry. From the kinetic point of view, there is bothgood and bad news regarding these diagrams. Let usfocus on the Delaunay triangulation | these diagramsare equivalent and the events that change one combina-torially are exactly the events that change the other aswell. Maintaining the Delaunay triangulation of pointsmoving in a low-dimensional Euclidean space is sur-prisingly straightforward. We describe the situationfor d = 2; analogous statements hold in higher dimen-sions. The key insight that helps is an old theorem ofDelaunay himself: a triangulation which is `locally De-launay' is globally Delaunay [22]. By locally Delaunaywe mean that every edge of the triangulation passes theInCircle test | in other words the circumcircle of thetriangle on one side of the edge does not contain thethird vertex of the triangle on the other side. This setof local conditions gives us a compact set of certi�catesfor the Delaunay triangulation; their failure times be-come the events to be scheduled in the event queue.When a failure event happens, a `ip operation' [24]replaces the bad edge by a good edge, and all is well.Thus a KDS for Delaunay is immediate and is clearlyresponsive, strongly e�cient, and compact structure,though of course it is not local (a vertex can have highdegree).That was the good news. The bad news is that de-spite work on this problem over several decades, westill do not know a tight bound on the number of com-binatorial changes in the Delaunay triangulation whenthe points move pseudo-algebraically, or even linearly.Currently the best known upper bound is O(nd�s(n))[30] for some constant s, and the best known lowerbound is 
(nd). This gap makes it hard to judge theworst-case e�ciency of algorithms that utilize Delau-nay or Voronoi KDSs. There is some hope that we canapply recent techniques used to prove a subcubic boundon the complexity of the union of n unit cylinders inR3 [1] to improve the upper bound for d = 2.Closest pair problemsTracking the closest pair among a set of moving ob-jects gives us a way to detect collisions among them:clearly the next colliding pair must be the closest pairamong all the objects for a small time interval beforethe collision. Note also that the closest pair of n mov-ing objects can change at most a near-quadratic num-ber of times | we simply plot the separation of eachpair as a function of time and take the lower envelope
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L. Guibasof these functions. Though Voronoi and Delaunay di-agrams contain within them closest-pair information(for example, a kinetic tournament on the Delaunayedges will easily maintain the closest pair), the near-cubic bound on events for these diagrams suggests thatother approaches may be signi�cantly more e�cient.We have been able to develop two di�erent kineticdata structures for maintaining the closest pair amongn moving points. One structure is for d = 2 [12](though extensions to higher dimensions should be pos-sible), while the other works for all dimensions [15].Both structures are based on a common insight: to�nd the closest pair is is su�cient to examine a lin-ear number of point pairs de�ned by partitioning thespace around each point into a �xed number of con-gruent cones having the point as their apex. Thesecones have a central axis and each point keeps trackof some of its nearest neighbors in each cone. This ofcourse is an old idea going back to A. Yao [16], butin our case the nearest neighbors are de�ned not interms of Euclidean distance, but in terms of distancefrom the apex to the projections of the points on thecone axis | maintaining these neighbors is a mucheasier 1-d problem. A packing lemma implies that ifwe have �ne enough cones and select enough nearestneighbors in each cone, then we cannot miss the trueEuclidean closet pair. For example, in the case d = 2,our �rst approach uses three 60� cones and one neigh-bor per cone, while the second approach use four 90�cones and three neighbors per cone. It turns out thatpoint membership in these cones, as well as the 1-dnearest neighbors used by these algorithms, can all beobtained from keeping track of the sorted order in theprojections of the moving points along a �xed (but ofsize roughly 2d) set of directions in the space. Thusthese methods clearly process a quadratic set of eventsin the worst case. Keeping track of which points lie inwhich cones is accomplished by using a kinetic multi-dimensional range search tree [15]. With some furtherinsights that we do have not the space to discuss here,these ideas lead to closest pair KDSs which are respon-sive, e�cient, local, and compact.Several variations on the closest pair problem areinteresting and open, even for d = 2. First, we donot have a good KDS for the bichromatic closest pairproblem [2]. Second, though our closest pair methodsextend to the problem of keeping track of the clos-est among n moving equal radius balls, they do not

work when the radii are widely di�erent. The reason isthat the key packing lemma we use fails in that case.Of course a Delaunay triangulation corresponding toa weighted Voronoi diagram can still be used in thiscase [17]. But the issue of whether there is a KDS witha near-quadratic number of events for this problem re-mains open. Furthermore, it is not clear if it is possibleto have a local structure at all. A large ball with manysmall balls near its boundary suggests that sublinearlocality may not be possible | though we have beenunable to prove any hard lower bound.Finally note that our closest pair algorithms havethe undesirable property that they process events cor-responding to order reversals on the projections of thepoints along a number of axes. Many such eventsmight be irrelevant, as the points involved are actu-ally very far away in space. It seems intuitively desir-able to develop kinetic structures where events alwayscorrespond to interactions between points that are suf-�ciently close. We can accomplish this by partition-ing space into bins and processing events only amongpoints in each bin, but at some point the cost of trans-ferring points from bin to bin also becomes signi�cant[35].Minimum spanning treesIn a number of applications the moving objects areobservers and it is important to keep communicationamong them for e�ective global motion scheduling, soas to accomplish a task (e.g., explore a building to �nda target). One way of doing so is to keep a set of point-to-point wireless communication links between pairsof observers. Among all possible such communicationnetworks, the minimum spanning tree (MST), i.e. theset of links connecting all the observers together withthe minimum total Euclidean length, has many desir-able properties. How can we e�ciently maintain theMST of n points moving around in space?We do not yet have a good kinetic solution for thisproblem. We have structures which are responsive,compact, and local, but not necessarily e�cient [15].Our structures maintain either the MST under a poly-hedral distance metric, or an approximate EuclideanMST (guaranteed to be a 1 + � approximation of thetrue Euclidean MST). These structures make use of thekinetic multidimensional range search tree mentionedearlier. Our algorithms exploit again the idea of main-taining a sparse graph among the points which is guar-
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Kinetic Data Structuresanteed to contain all the MST edges, and then keepingtrack of the MST of this graph. Note that the MSTcan change either because the underlying sparse graphchanges combinatorially, or because the weight rela-tions among the edges of the graph change over time.We have recently [7] been able to obtain a subquadraticalgorithm (O(n11=6polylog(n)) currently, but probablybetter) for maintaining the MST of a (�xed) planargraph with edge weights varying in a pseudoline fash-ion (pseudo-algebraic of degree 1). This new algorithmis based on recursive graph partitioning using cycle sep-arators and leads to a responsive, local, and compactKDS. The analysis uses tools similar to those exploitedby Dey in his recent breakthrough result on the com-plexity of a level in an arrangement of lines (and pseu-dolines) [23]. As in the case of Voronoi/Delaunay, weare somewhat hampered by the lack of sharp boundson the combinatorial number of changes to the MSTin both the geometric and graph settings, even un-der linear point or weight motions (for these cases thecurrently best known upper bounds are O(n3) for theEuclidean MST of n linearly moving points [34], andO(kn1=3) for the MST of a graph with k vertices andn edges whose weights change linearly, as follows fromthe technique of [23]).Incidences and many faces problemsNot every proximity problem deals with points orballs. In fact mixed proximity problems between pointsand lines or curves raise many interesting kinetic issuesof their own. For example, consider the following prob-lem. In the plane we are given n moving points andn moving lines. We wish to track the closest point-line pair (or perhaps just report all point line inci-dences during the motion). Clearly there can be anear-quadratic number of combinatorial changes to thecon�guration function. But a local and compact struc-ture may not be possible. The standard many facesconstruction [25], as well as Erickson's lower bounds onthe static version of this problem [27], suggest that anatural certi�cate set size for this problem is �(n4=3).By using �-net techniques we can give a kinetic datastructure that processes a near-quadratic number ofevents and has a proof size of O(n5=3) [4]. It would bequite interesting to do better.Several variations are also worth investigating.These include maintaining the face or faces of the ar-rangement of the lines containing one or several points,

maintaining the zone of another line, and many otherkinetic versions of classical arrangement problems. Ofcourse, if we are willing to maintain the full arrange-ment of the moving lines, these problems become rathereasy. The arrangement itself can be maintained by us-ing a vertical decomposition of it | the certi�cateswill simply assert that each trapezoid is well formed.The proof size will be �(n2) and the worst-case local-ity �(n) (this is optimal for this problem). An easycounting argument can be used to show that the num-ber of events processed by this kinetic structure willbe near-cubic (in space-time we sum the squares of thecomplexities of the cells of that 3-d arrangement).Maintaining intersecting pairsWe remarked earlier on the use of bounding volumesfor e�cient collision detection among moving objects,a method well-established in graphics and robotics[11]. Suppose for concreteness that we are in a 2-dsituation and that these bounding volumes are disks.The bounding disks of two objects may intersect, eventhough the objects themselves do not. One way toapproach the problem of collision detection is to main-tain the intersecting pairs of disks. Pairs of objectswhose disks intersect have to be checked for collisionby a more sophisticated algorithm. When a new pairof disks starts intersecting, the corresponding pair ofobjects is added to the list of those to be thus checked.Similarly, when a pair of disks stops intersecting, theobject pair is removed.This is a more challenging problem than maintainingthe closest pair of disks, as in the latter we can assumethat all the disks are disjoint. Note that, since forour purposes it is su�cient to just report the changesin intersection status, we do not need to maintain anexplicit list of intersecting pairs. This is fortunate, be-cause there can be �(n2) intersecting pairs among then disks. One approach for discovering the changes inthe intersecting pairs is to maintain a hitting set ofpoints for the intersections, i.e., a set of point such thatevery intersecting pair contains one of these points.The arguments of [42] give an upper bound of O(n5=3)and a lower bound of O(n4=3) on the size of a minimumhitting set. We can also assume, without loss of gener-ality, that the hitting set points lie in what are calledmaximal cells of the arrangement of the disks (theseare cells covered by more disks than any of their neigh-bors | they are always intersections of a number of the
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L. Guibascircles and thus convex). A hitting set can be main-tained by (1) tracking the evolution and eventual deathof these maximal cells and (2) discovering the creationof new maximal cells, which always arise as a new in-tersection between two disks. The death of a maximalcell implies that a pair of disks stops intersecting, andthat a maximal cell has �ssioned into two. The set ofintersections that before was hit by a single point willnow require two points to be hit (unless one or both ofthe new maximal cells is a single disk contained in noother, in which case it need not be hit). The trackingof a single maximal cell is the maintenance of the inter-section a set of disks and this is akin to the intersectionof half-planes or the convex hull problem we have al-ready discussed in Section 6. However, the discoveryof new maximal cells will require some new insights fora good KDS.A di�erent view of this problem that may be helpfulcan be obtained by lifting the disks with center (x; y)and radius r to the point in 3-d (x; y; x2+y2�r2). If weimagine that the paraboloid of revolution z = x2+y2isan opaque surface, then the condition that two disksintersect is exactly that the corresponding 3-d pointsare mutually visible, despite the paraboloid obstruc-tion. Thus as these points y around, we are interestedin detecting visibility changes among the point pairs.We also note that this intersection maintenance ques-tion makes sense for other bounding volumes, includingaxis-aligned boxes | for which it may be easier.8 Visibility ProblemsThe use of visibility information is essential in render-ing animations involving very large large models (e.g.,architectural walkthroughs) as well as in planning mo-tions related to visibility tasks (model or environmentacquisition by one or more mobile robots with cameras,guarding or art gallery type problems, pursuit-evasionalgorithms, etc.). In the context of kinetic data struc-tures, these applications pose problems such as themaintenance of the portions of the environment cur-rently visible from one or multiple moving observers,the maintenance of the mutually visible pairs of ob-servers, etc.Binary space partitionsBinary space partitions (or BSPs) were one of theearlier structures used in computer graphics to obtain

visibility information. The application of BSPs to vis-ibility determination is based on the principle that anenvironment can be described as a collection of clus-ters, which can be separated from each other in such away that a visibility ordering can be de�ned betweenthe clusters. The partition of the clusters is done bymeans of cutting the underlying space into two halfs-paces by a plane. The crucial observation is that clus-ters that lie in the same halfspace as a given viewpointcan obscure, but never be obscured by, the clusters onthe other side | which then provides a visibility or-der that can be used to correctly render a scene. Arecursive application of the partition operation yieldsa binary space partition tree from which a visibility or-dering can be determined by performing a depth-�rstsearch in the tree. There have been a few attemptsto update BSPs when the objects de�ning them move[37, 45, 20]. All these prior e�orts, however, reduce todeleting moving objects from their earlier positions andreinserting them in their current positions after sometime interval has elapsed. Such approaches su�er fromall the problems discussed in Section 1.We have recently been able to obtain kinetic datastructures for disjoint moving segments in the plane [6],and disjoint moving triangles in space [3]. These meth-ods are based on de�ning a BSP by cuts along the givenobjects or parallel to a particular axis; the cuts are gen-erated according to a random ordering of the objects.The resulting BSP has expected size O(n logn) anddepth O(logn) in 2-d, and expected size O(n log2 n+k)and depth O(logn) in 3-d, where k denotes the numberof intersections between pairs of edges in the projec-tions of the triangles on the xy-plane. As this latterbound suggests, our 3-d structure is based on a kinetic2-d structure for maintaining the BSP of set of movingand possibly intersecting segments. These BSPs be-have very well from the kinetic point of view: we candetect when the current BSP structure becomes invaliddue to object motion and update the tree at a cost ofO(logn) per event for the 2-d BSP, and O(log2 n) forthe 3-d BSP. In the easier to explain 2-d algorithm theevents correspond to times when certain critical trape-zoids, called transient trapezoids [6], collapse by havingtheir two parallel sides coincide. The event counts areO(n2) and O(n2�s(n)) in the 2-d and 3-d cases respec-tively. These structures are responsive and stronglye�cient. Their size is bounded by the BSP size, butthey are not local.
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Kinetic Data StructuresMany interesting issues remain open. To obtain theabove bounds we need to assume that there is no corre-lation between the motions of the objects and the �xedrandom ordering used by the algorithm. An adversarycould, of course, design motions aimed at eventuallymaking these BSPs bad, but then the algorithm couldrespond by evolving over time the ordering throughrandom transpositions and making the correspondingupdates to the tree. An even more fundamental openquestion has to do with BSP optimality, a notoriouslydi�cult problem. Our BSPs above are strongly e�-cient, but could it not be that there is some other BSPthat undergoes many fewer events for the same mo-tions? Can we prove that all 2-d BSPs of a certaintype must undergo 
(n2) transitions for some pseudo-algebraic motion of the n disjoint line segments in theplane?Visibility setFor very large environments, even the fastest hard-ware depth-bu�ers cannot render a scene at interac-tive frame rates. Thus techniques have been developedfor computing e�ciently a relatively small superset ofthe potentially visible polygons, called the visibility set,and then throwing only those to the depth bu�er [43].A number of approaches have been proposed for main-taining this visibility set as the observer moves [19, 9] ina 2-d environment. Accomodating both observer andenvironmental motion is clearly an area where furtherresearch needs to be done.9 Probabilistic Event BoundsGiven the rather high worst-case event counts we saw inearlier sections, it makes sense to ask about the num-ber of changes these con�guration functions undergowhen we consider average, or `typical' object motions.De�ning typical object motions is of course very appli-cation dependent. Nevertheless, we have initiated aninvestigation of how con�guration functions change forvery simple random point motions in the plane.Assume n points choose independently a random ori-gin and destination in the unit square and then, in thetime interval [0; 1], they move with constant velocityalong a straight line segment from their origin to theirdestination. This will be our model of a random mo-tion in the plane. In [46] it is shown that the convexhull of the points changes �(log2 n) times in expec-tation; the corresponding bounds for closest pair and

Delaunay triangulation are �(n) and �(n3=2) respec-tively. The methods used to obtain these results mimicthose that have been successfully applied to the samequestions in the static setting [39]. For instance, in thecase of the convex hull, we compute the conditionalprobability that three points are on the convex hullgiven that they are collinear along a line ` at time t.We then compute the joint probability density on theproduct space of lines and times, and use linearity ofexpectation to complete the calculation. Such proba-bilistic analyses give simple answers to questions thatare much harder to tackle in the worst case. Some pre-liminary calculations suggest that, in d dimensions andfor a similar probabilistic model, the Delaunay trian-gulation changes �(n1+1=d) times and that the closestpair changes �(n2=d) times in expectation.The expected number of events processed by a KDScan also be computed in this model. For example, theconvex hull structure we have presented in Section 6processes �(n) events in expectation, while our 2-dclosest point structures process �(n2) events even inexpectation, as the latter have to maintain sorted or-derings along one or more axes. There is a simple mod-i�cation to one of the closest pair algorithms [14] thatavoids these sorts and experimentally seems to processroughly �(n3=2) events | but we have not been ableto prove this formally. For Delaunay, of course, thereare no internal events, so the trivial KDS for Delaunayalso processes �(n3=2) events in expectation.The case of the minimum spanning tree seems tobe especially di�cult to analyze in this random set-ting, and the above methods do not apply. An up-per bound of O(n5=2) (to be contrasted with the bestknown worst-case upper bound of O(n32�(n)) [34]) fol-lows from the fact that the MST is a subgraph of theDelaunay triangulation and some standard batching ar-gument. A major subgoal in solving this problem is toanswer the following static question: given n pointschosen independently at random according to a pre-scribed distribution, what is the expected size of the(graph) diameter of their MST?10 Kinetic Event SchedulingIn the e�cient implementation of kinetic data struc-tures, a key problem is the e�cient scheduling andde-scheduling of events (in our implementations thisaccounts for 70% to 90% of the total cost). The twist
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L. Guibasthat makes this di�erent from a standard priority queuemaintenance problem is that the calculation of theevent times is part of our cost. Since our proofs evolverapidly over time, the accurate calculation of an eventtime may be wasteful if the corresponding certi�categets removed from the proof before its failure time. Wecannot, of course, know the future, but this situationsuggests that we compute less accurately event timesthat are far into the future, and re�ne our estimates asthey get closer and closer to the present time.Motivated by these issues, we have been studyingthe following problem. Suppose we maintain a set Sof low degree polynomials ff1(t); f2(t); : : : ; fk(t)g |these are associated with the certi�cates currently ac-tive in a KDS. For example, assuming we have pointswith polynomial motions, if the event we worry aboutis that `points A, B, and C become collinear', or equiv-alently `the triangle ABC changes sign', then the asso-ciated polynomial f(t) will simply be the signed area ofthe triangle ABC at time t. There is the notion of thecurrent time t0, and we are interested in �nding quicklytime t1, the smallest real root of any of the fi whichis larger than t0. The time t1 is the time of the nextkinetic event. Then we advance time by setting t0  t1and let our KDS update its certi�cate set and thus theset of active polynomials. If the KDS is responsive, thechanges to S will be relatively small. We then repeatthis process all over to continue the simulation.In order to maintain the next largest real root of thisslowly evolving set of polynomials we can of course cal-culate all the real roots of each polynomial to the re-quired precision for the simulation and insert all theseroots into a standard priority queue. But, as remarkedabove, this may spend root-�nding cycles for eventsthat will never happen. We have been investigating anapproach based on Sturm sequences in which for eachactive polynomial f(t) we isolate its roots into a set ofintervals whose size increases exponentially as t goes toin�nity. This exponentially increasing set of intervalscontains all the real roots of f | of course we allowintervals that contain many roots. The leftmost inter-val of f represents f in a priority queue where thepolynomials compete to determine the smallest realroot. Both the process of resolving comparisons be-tween such intervals, as well as certain large steps for-ward in time, can cause us to re�ne these interval se-quences to obtain tighter bounds on the roots of f .We are still developing the theoretical basis of this ap-

proach and a preliminary implementation. Note that,assuming polynomial or rational motions, an interval-based approach may allow a simulation using only ra-tional arithmetic.11 Implementation IssuesIn order to validate the use of kinetic data structures inpractice, we have implemented a number of the previ-ously discussed structures and compared them to alter-native methods for maintaining the same con�gurationfunction. This implementation has raised a number ofadditional research issues that need to be addressed.Kinetic convex hulls in practiceIn addition to the kinetic method presented in Sec-tion 6, we implemented the straightforward Delaunaytriangulation KDS of Section 7 and a `brute-force' al-gorithm. We implemented the Delaunay KDS becauseit is used in several kinetic problems, but in particularit contains the convex hull as a substructure. For thebrute-force structure, we simply calculate the time atwhich each point will hit (or leave) the convex hull, as-suming its current motion remains unchanged. Whena point on the hull has a ight plan update, we mustrecalculate the event times of all the other points4. Fur-thermore, whenever a point enters or leaves the convexhull, all events must be rescheduled.In order to remain independent of speci�c implemen-tation details, the cost of a KDS was taken to be asum over the set of polynomial equations solved, eachweighted by an amount corresponding to the di�cultyof solving equations of that degree. We ran these threemethods with n ranging up to 10000 points on randommotions like those in Section 95. We let the simulationrun until the convex hull stabilized and there was nomore events in the event queue (Figure 3). As Fig-ure 3 shows, the kinetic structure becomes superiorto the brute force structure for n less than 100, andit is always much superior to the Delaunay KDS asthe latter is hampered by having to solve fourth de-gree equations (as opposed to second degree for theconvex hull KDS). Three snapshots from our imple-mentation are shown in Figure 4. On the bottom is a4When a non-hull point updates its ight plan, we needonly recalculate its own event time.5Alternative distributions, such as the uniform unit diskand the Gaussian, gave qualitatively similar results.
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Figure 3: Cost (weighted sum of the number of equationssolved) of the three di�erent methods that maintain the con-vex hull, when the points have linear motions.

Figure 4: Three frames from a kinetic convex hull anima-tion.time window showing event times. The long bars repre-sent external events, while the short bars show internalevents. A public demo of this software is available atwww-graphics.stanford.edu/�jbasch/demokin. Several additional experiments are described in [14]and in a forthcoming fuller version of that paper basedon current work. Our primary �nding is that, with acareful implementation, kinetic data structures do notpose major di�culties in practice and perform well on
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L. Guibasseveral natural motion distributions. For a large num-ber of points, alternative data structures su�er fromnon-locality or expensive root-�nding operations.Open research issuesThe implementation of kinetic structures raises nu-merous questions that we intend to address.� We have already discussed the issue of avoidingthe precise calculation of event times until theyare needed. There is also concern about processingevents out of of order, or multiple times, becauseof numerical errors. With some preliminary e�ortsin this direction, we were able to run reliable simu-lations involving 50,000 points with about 400,000events for the convex hull KDS.� It is not clear that processing all events in the idealtime order is necessary for a correct simulation. Iftwo events happen at almost the same time, butthey involve sets of objects that are far apart fromeach other and do not otherwise interact accordingto the CF, it may be acceptable to process theseevents in either order. Of course we do want toguarantee that all events a�ecting any particularobject happen in the correct sequence. This thenwould give us a `local clock' for each object andwe would not require global synchronization be-tween all these clocks | an approach reminiscentof a topological sweep [26], but now in the timedomain.� What if too many events happen in a short timeinterval and we do not have the computational re-sources to process them all in that interval? Canwe batch the processing of nearby events for e�-ciency? Given a description of a class of motionsfor the objects (e.g., bounds on velocities, etc.),can we prove that with a given amount of compu-tational resources we will never get into this bot-tleneck?12 Conclusions and Impact of theWorkWe have presented the notion of kinetic data struc-tures, based on the idea of animating proofs throughtime. Kinetic structures raise numerous new and inter-esting combinatorial and algorithmic questions, whileat the same time o�ering the promise of signi�cant im-pact in all areas of computer science dealing with sim-
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